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The title compound, [V2Cl4O2(CH3CN)4], is a centrosym-

metric dinuclear VIV complex associated with four molecules

of acetonitrile. The coordination around both VIV atoms is

essentially square-planar, involving three Cl atoms and one O

atom [maximum deviation = 0.017 (3) Å for the O atom]. The

augmented octahedral coordination of the metal atom is

completed by the N atoms of acetonitrile ligands. The VIV

atoms are linked by two Cl atoms, acting as bridging atoms.

The crystal studied was a non-merohedral twin with a ratio of

the two twin components of 0.8200 (3):0.1800 (3). Although Cl

and O atoms are present as potential acceptors in the title

compound, no hydrogen bonds were observed in the crystal

structure.

Related literature

For the biological activity of vanadium(IV) compounds, see:

D’Cruz et al. (2003); Lopez et al. (1976); Lu et al. (2001); Shi et

al. (1996). For Ziegler–Natta catalysts, see: Hagen et al. (2002).

For the synthesis of chloridooxidovanadium(IV) complexes,

see: du Preez & Sadle (1967); Homden et al. (2009); Kern

(1962); Papoutsakis et al. (2004); Priebsch & Rehder (1990).

Experimental

Crystal data

[V2Cl4O2(C2H3N)4]
Mr = 439.90
Triclinic, P1
a = 7.0242 (6) Å
b = 8.1388 (6) Å
c = 8.7118 (5) Å
� = 86.536 (6)�

� = 66.806 (7)�

� = 74.374 (7)�

V = 440.28 (6) Å3

Z = 1
Mo K� radiation
� = 1.67 mm�1

T = 120 K
0.30 � 0.20 � 0.15 mm

Data collection

Oxford Diffraction Xcalibur
Sapphire2 diffractometer

Absorption correction: multi-scan
(CrysAlis RED; Oxford

Diffraction, 2009)
Tmin = 0.804, Tmax = 1.000

1550 measured reflections
1550 independent reflections
1432 reflections with I > 2�(I)

Refinement

R[F 2 > 2�(F 2)] = 0.031
wR(F 2) = 0.103
S = 1.25
1550 reflections

94 parameters
H-atom parameters constrained
��max = 0.47 e Å�3

��min = �0.51 e Å�3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell

refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduc-

tion: CrysAlis RED; program(s) used to solve structure: SHELXS97

(Sheldrick, 2008); program(s) used to refine structure: SHELXL97

(Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics:

Mercury (Macrae et al., 2008); software used to prepare material for

publication: SHELXL97.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: RU2013).
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Di- -chlorido-bis[diacetonitrilechloridooxidovanadium(IV)]
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Comment

Vanadium(IV) compounds exert biological activity such as inhibition for some phosphatases (D'Cruz et al., 2003; Lopez et
al., 1976), modulation of cell's redox potential (Lu et al., 2001) or catalysis of the generation of reactive oxygen species (Shi
et al., 1996). The oxovanadium(IV) complexes exhibit rapid selective spermicidal effects and their anti-HIV activity was
studied too (D'Cruz et al., 2003). Chlorovanadium(IV) compounds are also used for catalysis in homogenous Ziegler-Natta
polymerizations to prepare high-molecular-weight polymers with narrow molecular weight distribution (Hagen et al., 2002).

The dichloro(oxo)vanadium(IV) complex with acetonitrile was prepared for the first time by the reaction of VOCl2 with

dry acetonitrile (du Preez et al. , 1967). The structure characteristic of the reaction product was performed only by means
of UV, IR and conductivity measurements. The constitution of this reaction product was determined as VOCl2.2.5CH3CN.

The only known crystal structure of acetonitrile adduct with dichloro(oxo)vanadium complex is to our knowledge [H3Np-

tolyl][VOCl3(MeCN)2], which was prepared by the refluxing of [V(Np-tolyl)Cl3] in acetonitrile (Homden et al., 2009).

It is known a lot of VOCl2 adducts with organic solvents, namely VOCl2.2THF (Kern, 1962) and trans-

VOCl2(THF)2(H2O) (Papoutsakis et al., 2004; Priebsch et al., 1990), cis-VOCl2(CH3OH)3 (Papoutsakis et al., 2004), trans-

VOCl2(Et2O)2(H2O)2 (Papoutsakis et al., 2004) or VOCl2(HMPA)2 (du Preez et al., 1967). These adducts are presented

in the known crystal structures as monomers in all cases (Papoutsakis et al., 2004; Priebsch et al., 1990). All of these
complexes pick up very easily to the vanadium coordination sphere water molecules, therefore there are known only as
water adducts (Papoutsakis et al., 2004). On this account, it is necessary to keep strictly nonaqueous solution to obtain
dichloro(oxo)vanadium complexes without water in the vanadium coordination sphere.

The asymmetric unit of the title compound consists of a single vanadium(IV) complex molecule associated with four
molecules of acetonitrile (Fig. 1). Both of chlorine bridge atoms are situated essentially in the same plane with vanadium
atoms, as demonstrated by torsion angles V1—Cl1—V1A—Cl1A 0.0° and O1—V1—Cl1—V1A, which is 179.36 (11)°,
respectively. The angle describing the triple bond in acetonitrile is N2≡C3—C4 179.6 (4)° and N1≡C1—C2 179.1 (4)°,
respectively. The crystal packing is showed in Fig. 2.

Experimental

The title compound was obtained by the reaction of VOCl3 with N,N'-bis(trimethylsilyl)urea in acetonitrile. N,N'-

bis(trimethylsilyl)urea (3.0 mmol) was dissolved in 100 cm3 of dry acetonitrile at 70 °C. The solutoin of VOCl3 (2.6 mmol)

in in dry acetonitrile (50 cm3) was quickly added to the solution of N, N'-bis(trimethylsilyl)urea and the reaction mixture

was refluxed for 17 h. The solvent was partially distilled off after the reaction and the total volume was reduced to 25 cm3.

Dry CCl4 (25 cm3) was consequently added to the concentrated acetonitrile solution and two liquid phases were formed.

http://dx.doi.org/10.1107/S1600536811037184
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Dastych,%20D.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Rotter,%20P.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Demo,%20G.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Dastychov%26aacute;,%20L.
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Blue crystals of [(µ-Cl)2(VOCl2(CH3CN)2)2] grew up from the surface of the denser phase after 4 days standing at room

temperature.

Refinement

The investigated crystal was a non-merohedral twin [twin law: rotation of 180° around the [101] direction].. The twin
law was determined using TwinRotMat implemented in PLATON (Spek, 2009). The twinning coefficient of the crystal is
0.180040. The description of twin law in transformation matrix is: (0.397 - 0.364 0.603) (0.000 - 1.000 0.000) (1.397 - 0.364
- 0.397) The detwinned data were obtained by HKLF 5 option in the SHELXL97 program (Sheldrick, 2008) and the final
refinement was carried out against the detwinned data set.

Figures

Fig. 1. Crystal structure of the title compound. Thermal elipsoids are drawn with 50 % prob-
ability level, hydrogen atoms are represented as arbitrary spheres.

Fig. 2. A view of the crystal structure of the title compound showing chains parallel to the ab-
plane made up by C—H···Cl and C—H···O weak interactions (dashed lines). Thermal elips-
oids are drawn with 50 % probability level.

Di-µ-chlorido-bis[diacetonitrilechloridooxidovanadium(IV)]

Crystal data

[V2Cl4O2(C2H3N)4] Z = 1
Mr = 439.90 F(000) = 218

Triclinic, P1 Dx = 1.659 Mg m−3

Hall symbol: -P 1 Mo Kα radiation, λ = 0.7107 Å
a = 7.0242 (6) Å Cell parameters from 5307 reflections
b = 8.1388 (6) Å θ = 3.3–25.0°
c = 8.7118 (5) Å µ = 1.67 mm−1

α = 86.536 (6)° T = 120 K
β = 66.806 (7)° Block, blue
γ = 74.374 (7)° 0.30 × 0.20 × 0.15 mm

V = 440.28 (6) Å3
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Data collection

Oxford Diffraction Xcalibur Sapphire2
diffractometer 1550 independent reflections

Radiation source: Enhance (Mo) X-ray Source 1432 reflections with I > 2σ(I)
graphite Rint = 0.000

Detector resolution: 8.4 pixels mm-1 θmax = 25.0°, θmin = 3.3°

ω scans h = −7→8
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009) k = −9→9

Tmin = 0.804, Tmax = 1.000 l = −9→10
1550 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct
methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

R[F2 > 2σ(F2)] = 0.031
Hydrogen site location: inferred from neighbouring
sites

wR(F2) = 0.103 H-atom parameters constrained

S = 1.25
w = 1/[σ2(Fo

2) + (0.0397P)2 + 1.0484P]
where P = (Fo

2 + 2Fc
2)/3

1550 reflections (Δ/σ)max < 0.001

94 parameters Δρmax = 0.47 e Å−3

0 restraints Δρmin = −0.51 e Å−3

Special details

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

V1 0.58161 (10) 0.06353 (8) 0.67541 (8) 0.0141 (2)
Cl1 0.71230 (14) −0.15703 (11) 0.46017 (11) 0.0172 (2)
Cl2 0.38000 (14) 0.30593 (12) 0.85537 (12) 0.0201 (2)
O1 0.7642 (4) −0.0069 (3) 0.7454 (3) 0.0192 (6)
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N2 0.7440 (5) 0.2175 (4) 0.5012 (4) 0.0197 (7)
C4 0.9873 (6) 0.3945 (5) 0.3008 (5) 0.0228 (8)
H4A 0.8981 0.5071 0.2916 0.034*
H4B 1.0645 0.3351 0.1901 0.034*
H4C 1.0911 0.4083 0.3448 0.034*
C2 0.1588 (7) −0.2589 (5) 1.0454 (5) 0.0241 (9)
H2A 0.0118 −0.2274 1.0500 0.036*
H2B 0.1555 −0.2385 1.1563 0.036*
H2C 0.2258 −0.3801 1.0105 0.036*
N1 0.3766 (5) −0.0747 (4) 0.8326 (4) 0.0190 (7)
C3 0.8514 (6) 0.2950 (5) 0.4132 (5) 0.0193 (8)
C1 0.2821 (6) −0.1565 (5) 0.9263 (5) 0.0190 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

V1 0.0142 (3) 0.0150 (3) 0.0125 (3) −0.0029 (2) −0.0051 (3) −0.0007 (2)
Cl1 0.0173 (4) 0.0172 (5) 0.0155 (5) −0.0002 (3) −0.0071 (4) −0.0039 (3)
Cl2 0.0191 (5) 0.0192 (5) 0.0197 (5) −0.0014 (4) −0.0066 (4) −0.0054 (4)
O1 0.0197 (14) 0.0202 (14) 0.0188 (14) −0.0028 (11) −0.0100 (11) −0.0016 (11)
N2 0.0180 (16) 0.0195 (17) 0.0177 (17) −0.0033 (14) −0.0039 (14) −0.0002 (14)
C4 0.025 (2) 0.024 (2) 0.020 (2) −0.0099 (17) −0.0079 (17) 0.0039 (16)
C2 0.025 (2) 0.024 (2) 0.023 (2) −0.0136 (17) −0.0040 (17) 0.0005 (17)
N1 0.0219 (16) 0.0209 (17) 0.0135 (16) −0.0070 (14) −0.0051 (14) −0.0010 (14)
C3 0.0182 (19) 0.019 (2) 0.020 (2) 0.0008 (16) −0.0096 (17) −0.0040 (16)
C1 0.0200 (19) 0.0182 (19) 0.019 (2) −0.0030 (16) −0.0087 (16) −0.0028 (16)

Geometric parameters (Å, °)

V1—O1 1.588 (3) C4—H4A 0.9800
V1—N1 2.085 (3) C4—H4B 0.9800
V1—N2 2.086 (3) C4—H4C 0.9800
V1—Cl2 2.3399 (10) C2—C1 1.448 (6)
V1—Cl1 2.3969 (10) C2—H2A 0.9800

V1—Cl1i 2.6836 (10) C2—H2B 0.9800

Cl1—V1i 2.6836 (10) C2—H2C 0.9800
N2—C3 1.139 (5) N1—C1 1.138 (5)
C4—C3 1.453 (6)

O1—V1—N1 94.79 (14) C3—N2—V1 171.8 (3)
O1—V1—N2 95.52 (14) C3—C4—H4A 109.5
N1—V1—N2 169.69 (13) C3—C4—H4B 109.5
O1—V1—Cl2 99.62 (10) H4A—C4—H4B 109.5
N1—V1—Cl2 89.60 (9) C3—C4—H4C 109.5
N2—V1—Cl2 88.90 (9) H4A—C4—H4C 109.5
O1—V1—Cl1 96.44 (10) H4B—C4—H4C 109.5
N1—V1—Cl1 89.01 (9) C1—C2—H2A 109.5
N2—V1—Cl1 89.61 (9) C1—C2—H2B 109.5
Cl2—V1—Cl1 163.95 (4) H2A—C2—H2B 109.5
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O1—V1—Cl1i 174.92 (10) C1—C2—H2C 109.5

N1—V1—Cl1i 84.57 (9) H2A—C2—H2C 109.5

N2—V1—Cl1i 85.15 (9) H2B—C2—H2C 109.5

Cl2—V1—Cl1i 85.42 (3) C1—N1—V1 172.0 (3)

Cl1—V1—Cl1i 78.53 (4) N2—C3—C4 179.6 (4)

V1—Cl1—V1i 101.47 (4) N1—C1—C2 179.1 (4)

O1—V1—Cl1—V1i 179.36 (11) Cl2—V1—Cl1—V1i −0.47 (16)

N1—V1—Cl1—V1i 84.66 (9) Cl1i—V1—Cl1—V1i 0.0

N2—V1—Cl1—V1i −85.13 (9)
Symmetry codes: (i) −x+1, −y, −z+1.
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Fig. 1
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Fig. 2


